隨著高一新教材的全面實(shí)施,數(shù)學(xué)學(xué)科的教學(xué)進(jìn)入了新課程改革實(shí)際階段,這就要求數(shù)學(xué)老師要做好教學(xué)工作計(jì)劃,下面是小編為大家精心整理的高一數(shù)學(xué)教學(xué)工作計(jì)劃范文,希望對大家有所幫助。
平面上的直線就是由平面直角坐標(biāo)系中的一個(gè)二元一次方程所表示的圖形 。
教學(xué)目標(biāo)
(1)掌握由一點(diǎn)和斜率導(dǎo)出直線方程的方法,掌握直線方程的點(diǎn)斜式、兩點(diǎn)式和直線方程的一般式,并能根據(jù)條件熟練地求出直線的方程.
(2)理解直線方程幾種形式之間的內(nèi)在聯(lián)系,能在整體上把握直線的方程.
(3)掌握直線方程各種形式之間的互化.
(4)通過直線方程一般式的教學(xué)培養(yǎng)學(xué)生全面、系統(tǒng)、周密地分析、討論問題的能力.
(5)通過直線方程特殊式與一般式轉(zhuǎn)化的教學(xué),培養(yǎng)學(xué)生靈活的思維品質(zhì)和辯證唯物主義觀點(diǎn).
(6)進(jìn)一步理解直線方程的概念,理解直線斜率的意義和解析幾何的思想方法.
教學(xué)建議
1.教材分析
(1)知識結(jié)構(gòu)
由直線方程的概念和直線斜率的概念導(dǎo)出直線方程的點(diǎn)斜式;由直線方程的點(diǎn)斜式分別導(dǎo)出直線方程的斜截式和兩點(diǎn)式;再由兩點(diǎn)式導(dǎo)出截距式;最后都可以轉(zhuǎn)化歸結(jié)為直線的一般式;同時(shí)一般式也可以轉(zhuǎn)化成特殊式.
(2)重點(diǎn)、難點(diǎn)分析
①本節(jié)的重點(diǎn)是直線方程的點(diǎn)斜式、兩點(diǎn)式、一般式,以及根據(jù)具體條件求出直線的方程.
解析幾何有兩項(xiàng)根本性的任務(wù):一個(gè)是求曲線的方程;另一個(gè)就是用方程研究曲線.本節(jié)內(nèi)容就是求直線的方程,因此是非常重要的內(nèi)容,它對以后學(xué)習(xí)用方程討論直線起著直接的作用,同時(shí)也對曲線方程的學(xué)習(xí)起著重要的作用.
直線的點(diǎn)斜式方程是平面解析幾何中所求出的第一個(gè)方程,是后面幾種特殊形式的源頭.學(xué)生對點(diǎn)斜式學(xué)習(xí)的效果將直接影響后繼知識的學(xué)習(xí).
②本節(jié)的難點(diǎn)是直線方程特殊形式的限制條件,直線方程的整體結(jié)構(gòu),直線與二元一次方程的關(guān)系證明.
2.教法建議
(1)教材中求直線方程采取先特殊后一般的思路,特殊形式的方程幾何特征明顯,但局限性強(qiáng);一般形式的方程無任何限制,但幾何特征不明顯.教學(xué)中各部分知識之間過渡要自然流暢,不生硬.
(2)直線方程的一般式反映了直線方程各種形式之間的統(tǒng)一性,教學(xué)中應(yīng)充分揭示直線方程本質(zhì)屬性,建立二元一次方程與直線的對應(yīng)關(guān)系,為繼續(xù)學(xué)習(xí)曲線方程打下基礎(chǔ).
直線一般式方程都是字母系數(shù),在揭示這一概念深刻內(nèi)涵時(shí),還需要進(jìn)行正反兩方面的分析論證.教學(xué)中應(yīng)重點(diǎn)分析思路,還應(yīng)抓住這一有利時(shí)使學(xué)生學(xué)會(huì)嚴(yán)謹(jǐn)科學(xué)的分類討論方法,從而培養(yǎng)學(xué)生全面、系統(tǒng)、辯證、周密地分析、討論問題的能力,特別是培養(yǎng)學(xué)生邏輯思維能力,同時(shí)培養(yǎng)學(xué)生辯證唯物主義觀點(diǎn)
(3)在強(qiáng)調(diào)幾種形式互化時(shí)要向?qū)W生充分揭示各種形式的特點(diǎn),它們的幾何特征,參數(shù)的意義等,使學(xué)生明白為什么要轉(zhuǎn)化,并加深對各種形式的理解.
(4)教學(xué)中要使學(xué)生明白兩個(gè)獨(dú)立條件確定一條直線,如兩個(gè)點(diǎn)、一個(gè)點(diǎn)和一個(gè)方向或其他兩個(gè)獨(dú)立條件.兩點(diǎn)確定一條直線,這是學(xué)生很早就接觸的幾何公理,然而在解析幾何,平面向量等理論中,直線或向量的方向是極其重要的要素,解析幾何中刻畫直線方向的量化形式就是斜率.因此,直線方程的兩點(diǎn)式和點(diǎn)斜式在直線方程的幾種形式中占有很重要的地位,而已知兩點(diǎn)可以求得斜率,所以點(diǎn)斜式又可推出兩點(diǎn)式(斜截式和截距式僅是它們的特例),因此點(diǎn)斜式最重要.教學(xué)中應(yīng)突出點(diǎn)斜式、兩點(diǎn)式和一般式三個(gè)教學(xué)高潮.
求直線方程需要兩個(gè)獨(dú)立的條件,要依不同的幾何條件選用不同形式的方程.根據(jù)兩個(gè)條件運(yùn)用待定系數(shù)法和方程思想求直線方程.
(5)注意正確理解截距的概念,截距不是距離,截距是直線(也是曲線)與坐標(biāo)軸交點(diǎn)的相應(yīng)坐標(biāo),它是有向線段的數(shù)量,因而是一個(gè)實(shí)數(shù);距離是線段的長度,是一個(gè)正實(shí)數(shù)(或非負(fù)實(shí)數(shù)).
(6)本節(jié)中有不少與函數(shù)、不等式、三角函數(shù)有關(guān)的問題,是函數(shù)、不等式、三角與直線的重要知識交匯點(diǎn)之一,教學(xué)中要適當(dāng)選擇一些有關(guān)的問題指導(dǎo)學(xué)生練習(xí),培養(yǎng)學(xué)生的綜合能力.
(7)直線方程的理論在其他學(xué)科和生產(chǎn)生活實(shí)際中有大量的應(yīng)用.教學(xué)中注意聯(lián)系實(shí)際和其它學(xué)科,教師要注意引導(dǎo),增強(qiáng)學(xué)生用數(shù)學(xué)的意識和能力.
(8)本節(jié)不少內(nèi)容可安排學(xué)生自學(xué)和討論,還要適當(dāng)增加練習(xí),使學(xué)生能更好地掌握,而不是僅停留在觀念上.
一、基本情況
高一計(jì)算機(jī)1323班共有學(xué)生55人,其中男生42人,女生13人。高一新生剛進(jìn)入高中,學(xué)習(xí)環(huán)境新,好奇心強(qiáng).但是普遍學(xué)習(xí)習(xí)慣不好,數(shù)學(xué)基礎(chǔ)較差,學(xué)習(xí)興趣不濃.所以工作的重心在于提高學(xué)生對數(shù)學(xué)科的興趣,以及在補(bǔ)足初中知識漏洞的前提下,進(jìn)一步的夯實(shí)學(xué)生基礎(chǔ).
二、指導(dǎo)思想
全面提高學(xué)生的科學(xué)文化素養(yǎng),圍著課堂教學(xué)這個(gè)中心,更新教育觀念,進(jìn)一步提高教學(xué)水平,培養(yǎng)學(xué)生分析問題解決問題的能力,同時(shí)扎扎實(shí)實(shí)抓好基礎(chǔ)知識,注意學(xué)生習(xí)慣的培養(yǎng),為三年后高考打下堅(jiān)實(shí)的基礎(chǔ)。
三、工作任務(wù)和措施
任務(wù):基礎(chǔ)模塊第一章至第四章
第一章集合(9月份
第二章不等式(10月份
第三章函數(shù)(11月份
第四章指數(shù)函數(shù)與對數(shù)函數(shù)(12月份-1月份
措施:
1.夯實(shí)三基
知識、技能和能力三者關(guān)系是互相依存、互相促進(jìn)的整體,能力是在知識的教學(xué)和技能的培訓(xùn)中形成的,通過數(shù)學(xué)思想的形成和數(shù)學(xué)方法的掌握,能力才得到培養(yǎng)和發(fā)展,同時(shí),能力的提高又會(huì)對知識的理解和掌握起促進(jìn)作用。因此,在教學(xué)中應(yīng)注意:
A.教學(xué)面向全體學(xué)生。
B.重視概念的歸納、規(guī)律的總結(jié)、技能的訓(xùn)練。
C.重視知識的產(chǎn)生、發(fā)展過程。
D.加強(qiáng)知識過關(guān)檢測,做好查漏補(bǔ)缺工作。
2.優(yōu)化課堂教學(xué)結(jié)構(gòu)
A.精心設(shè)計(jì)課堂教學(xué):
B.課堂練習(xí)典型化;
C.教學(xué)語言精練化
D.板書規(guī)范化。
3.加強(qiáng)學(xué)習(xí)方法指導(dǎo):
A.指導(dǎo)學(xué)生看書,培養(yǎng)學(xué)生主動(dòng)學(xué)習(xí)的習(xí)慣。
B.指導(dǎo)學(xué)生整理知識,總結(jié)解題規(guī)律,歸納典型例題解法及一題多解與多題一解。
4.加強(qiáng)學(xué)風(fēng)建設(shè)與學(xué)習(xí)習(xí)慣的培養(yǎng)。
適當(dāng)安排作業(yè),認(rèn)真檢查督促,加強(qiáng)優(yōu)生和后進(jìn)生的輔導(dǎo),對學(xué)生的作業(yè)盡量做到面批。
四、各章節(jié)授課具體時(shí)間安排:
(基礎(chǔ)模塊第一章集合(約12課時(shí)
(1理解集合、元素及其關(guān)系,掌握集合的表示法。
(2掌握集合之間的關(guān)系(子集、真子集、相等。
(3理解集合的運(yùn)算(交、并、補(bǔ)。
(4了解充要條件。
(基礎(chǔ)模塊第二章不等式(約12課時(shí)
(1理解不等式的基本性質(zhì)。
(2掌握區(qū)間的概念。高一上數(shù)學(xué)教學(xué)計(jì)劃高一上數(shù)學(xué)教學(xué)計(jì)劃。
(3掌握一元二次不等式的解法。
基礎(chǔ)模塊)第三章函數(shù)(約20課時(shí)
(1理解函數(shù)的概念和函數(shù)的三種表示法。
(2理解函數(shù)的單調(diào)性與奇偶性。
(3能運(yùn)用函數(shù)的知識解決有關(guān)實(shí)際問題。
(基礎(chǔ)模塊第四章指數(shù)函數(shù)與對數(shù)函數(shù)(約20課時(shí)
(1理解有理指數(shù)冪,掌握實(shí)數(shù)指數(shù)冪及其運(yùn)算法則,掌握利用計(jì)算器進(jìn)行冪的計(jì)算方法。
(2了解冪函數(shù)的概念及其簡單性質(zhì)。
(3理解指數(shù)函數(shù)的概念、圖像及性質(zhì)。
(4理解對數(shù)的概念(含常用對數(shù)、自然對數(shù)及積、商、冪的對數(shù),掌握利用計(jì)算器求對數(shù)值的方法。
(5理解對數(shù)函數(shù)的概念、圖像及性質(zhì)。
(6能運(yùn)用指數(shù)函數(shù)與對數(shù)函數(shù)的知識解決有關(guān)實(shí)際問題。
一、指導(dǎo)思想
準(zhǔn)確把握《教學(xué)大綱》和《考試大綱》的各項(xiàng)基本要求,立足于基礎(chǔ)知識和基本技能的教學(xué),注重滲透數(shù)學(xué)思想和方法.針對學(xué)生實(shí)際,不斷研究數(shù)學(xué)教學(xué),改進(jìn)教法,指導(dǎo)學(xué)法,奠定立足社會(huì)所需要的必備的基礎(chǔ)知識、基本技能和基本能力,著力于培養(yǎng)學(xué)生的創(chuàng)新精神,運(yùn)用數(shù)學(xué)的意識和能力,奠定他們終身學(xué)習(xí)的基礎(chǔ).
二、高一上冊數(shù)學(xué)教學(xué)教材特點(diǎn):
我們所使用的教材是人教版《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書·數(shù)學(xué)(A版)》,它在堅(jiān)持我國數(shù)學(xué)教育優(yōu)良傳統(tǒng)的前提下,認(rèn)真處理繼承、借簽、發(fā)展、創(chuàng)新之間的關(guān)系,體現(xiàn)基礎(chǔ)性、時(shí)代性、典型性和可接受性等,具有如下特點(diǎn):
1.“親和力”:以生動(dòng)活潑的呈現(xiàn)方式,激發(fā)興趣和美感,引發(fā)學(xué)習(xí)激情.
2.“問題性”:以恰時(shí)恰點(diǎn)的問題引導(dǎo)數(shù)學(xué)活動(dòng),培養(yǎng)問題意識,孕育創(chuàng)新精神.
3.“科學(xué)性”與“思想性”:通過不同數(shù)學(xué)內(nèi)容的聯(lián)系與啟發(fā),強(qiáng)調(diào)類比、化歸等思想方法的運(yùn)用,學(xué)習(xí)數(shù)學(xué)地思考問題的方式,提高數(shù)學(xué)思維能力,培育理性精神.
4.“時(shí)代性”與“應(yīng)用性”:以具有時(shí)代感和現(xiàn)實(shí)感的素材創(chuàng)設(shè)情境,加強(qiáng)數(shù)學(xué)活動(dòng),發(fā)展應(yīng)用意識.
三、高一上冊數(shù)學(xué)教學(xué)教法分析:
1.選取與內(nèi)容密切相關(guān)的、典型的、豐富的和學(xué)生熟悉的素材,用生動(dòng)活潑的語言,創(chuàng)設(shè)能夠體現(xiàn)數(shù)學(xué)的概念和結(jié)論,數(shù)學(xué)的思想和方法,以及數(shù)學(xué)應(yīng)用的學(xué)習(xí)情境,使學(xué)生產(chǎn)生對數(shù)學(xué)的親切感,引發(fā)學(xué)生“看個(gè)究竟”的沖動(dòng),以達(dá)到培養(yǎng)其興趣的目的.
2.通過“觀察”,“思考”,“探究”等欄目,引發(fā)學(xué)生的思考和探索活動(dòng),切實(shí)改進(jìn)學(xué)生的學(xué)習(xí)方式.
3.在教學(xué)中強(qiáng)調(diào)類比、化歸等數(shù)學(xué)思想方法,盡可能養(yǎng)成其邏輯思維的習(xí)慣.
四、學(xué)情分析
高一作為起始年級,作為從義務(wù)階段邁入應(yīng)試征程的適應(yīng)階段,該有的是一份執(zhí)著.他的特殊性就在于它的跨越性,理想的期盼與學(xué)法的突變,難度的加強(qiáng)與惰性的生成等等矛盾沖突伴隨著高一新生的成長.面對新教材的我們也是邊摸索邊改變,樹立新的教學(xué)理念,并落實(shí)在課堂教學(xué)的各個(gè)環(huán)節(jié),才能不負(fù)眾望.我們要從學(xué)生的認(rèn)識水平和實(shí)際能力出發(fā),研究學(xué)生的心理特征,做好初三與高一的銜接工作,幫助學(xué)生解決好從初中到高中學(xué)習(xí)方法的過渡.從高一起就注意培養(yǎng)學(xué)生良好的數(shù)學(xué)思維方法,良好的學(xué)習(xí)態(tài)度和學(xué)習(xí)習(xí)慣,以適應(yīng)高中領(lǐng)悟性的學(xué)習(xí)方法.
五、高一上冊數(shù)學(xué)教學(xué)教學(xué)措施:
1、激發(fā)學(xué)生的學(xué)習(xí)興趣.由數(shù)學(xué)活動(dòng)、故事、吸引人的課、合理的要求、師生談話等途徑樹立學(xué)生的學(xué)習(xí)信心,提高學(xué)習(xí)興趣,在主觀作用下上升和進(jìn)步.
2、注意從實(shí)例出發(fā),從感性提高到理性;注意運(yùn)用對比的方法,反復(fù)比較相近的概念;注意結(jié)合直觀圖形,說明抽象的知識;注意從已有的知識出發(fā),啟發(fā)學(xué)生思考.
本學(xué)期擔(dān)任高一(9)(10)兩班的數(shù)學(xué)教學(xué)工作,兩班學(xué)生共有120人,初中的基礎(chǔ)參差不齊,但兩個(gè)班的學(xué)生整體水平不高;部分學(xué)生學(xué)習(xí)習(xí)慣不好,很多學(xué)生不能正確評價(jià)自己,這給教學(xué)工作帶來了一定的難度,為把本學(xué)期教學(xué)工作做好,制定如下教學(xué)工作計(jì)劃。
一、指導(dǎo)思想:
使學(xué)生在九年義務(wù)教育數(shù)學(xué)課程的基礎(chǔ)上,進(jìn)一步提高作為未來公民所必要的數(shù)學(xué)素養(yǎng),以滿足個(gè)人發(fā)展與社會(huì)進(jìn)步的需要。具體目標(biāo)如下。
1.獲得必要的數(shù)學(xué)基礎(chǔ)知識和基本技能,理解基本的數(shù)學(xué)概念、數(shù)學(xué)結(jié)論的本質(zhì),了解概念、結(jié)論等產(chǎn)生的背景、應(yīng)用,體會(huì)其中所蘊(yùn)涵的數(shù)學(xué)思想和方法,以及它們在后續(xù)學(xué)習(xí)中的作用。通過不同形式的自主學(xué)習(xí)、探究活動(dòng),體驗(yàn)數(shù)學(xué)發(fā)現(xiàn)和創(chuàng)造的歷程。
2.提高空間想像、抽象概括、推理論證、運(yùn)算求解、數(shù)據(jù)處理等基本能力。
3.提高數(shù)學(xué)地提出、分析和解決問題(包括簡單的實(shí)際問題)的能力,數(shù)學(xué)表達(dá)和交流的能力,發(fā)展獨(dú)立獲取數(shù)學(xué)知識的能力。
4.發(fā)展數(shù)學(xué)應(yīng)用意識和創(chuàng)新意識,力求對現(xiàn)實(shí)世界中蘊(yùn)涵的一些數(shù)學(xué)模式進(jìn)行思考和作出判斷。
5.提高學(xué)習(xí)數(shù)學(xué)的興趣,樹立學(xué)好數(shù)學(xué)的信心,形成鍥而不舍的鉆研精神和科學(xué)態(tài)度。
6.具有一定的數(shù)學(xué)視野,逐步認(rèn)識數(shù)學(xué)的科學(xué)價(jià)值、應(yīng)用價(jià)值和文化價(jià)值,形成批判性的思維習(xí)慣,崇尚數(shù)學(xué)的理性精神,體會(huì)數(shù)學(xué)的美學(xué)意義,從而進(jìn)一步樹立辯證唯物主義和歷史唯物主義世界觀。
二、教學(xué)目標(biāo).
(一)情意目標(biāo)
(1)通過分析問題的方法的教學(xué),培養(yǎng)學(xué)生的學(xué)習(xí)的興趣。
(2)提供生活背景,通過數(shù)學(xué)建模,讓學(xué)生體會(huì)數(shù)學(xué)就在身邊,培養(yǎng)學(xué)數(shù)學(xué)用數(shù)學(xué)的意識。(3)在探究函數(shù)、等差數(shù)列、等比數(shù)列的性質(zhì),體驗(yàn)獲得數(shù)學(xué)規(guī)律的艱辛和樂趣,在分組研究合作學(xué)習(xí)中學(xué)會(huì)交流、相互評價(jià),提高學(xué)生的合作意識
(4)基于情意目標(biāo),調(diào)控教學(xué)流程,堅(jiān)定學(xué)習(xí)信念和學(xué)習(xí)信心。
(5)還時(shí)空給學(xué)生、還課堂給學(xué)生、還探索和發(fā)現(xiàn)權(quán)給學(xué)生,給予學(xué)生自主探索與合作交流的機(jī)會(huì),在發(fā)展他們思維能力的同時(shí),發(fā)展他們的數(shù)學(xué)情感、學(xué)好數(shù)學(xué)的自信心和追求數(shù)學(xué)的`科學(xué)精神。
(6)讓學(xué)生體驗(yàn)“發(fā)現(xiàn)——挫折——矛盾——頓悟——新的發(fā)現(xiàn)”這一科學(xué)發(fā)現(xiàn)歷程法。
(二)能力要求培養(yǎng)學(xué)生記憶能力。
(1)通過定義、命題的總體結(jié)構(gòu)教學(xué),揭示其本質(zhì)特點(diǎn)和相互關(guān)系,培養(yǎng)對數(shù)學(xué)本質(zhì)問題的背景事實(shí)及具體數(shù)據(jù)的記憶。
(3)通過揭示立體集合、函數(shù)、數(shù)列有關(guān)概念、公式和圖形的對應(yīng)關(guān)系,培養(yǎng)記憶能力。
2、培養(yǎng)學(xué)生的運(yùn)算能力。
(1)通過概率的訓(xùn)練,培養(yǎng)學(xué)生的運(yùn)算能力。
(2)加強(qiáng)對概念、公式、法則的明確性和靈活性的教學(xué),培養(yǎng)學(xué)生的運(yùn)算能力。
(3)通過函數(shù)、數(shù)列的教學(xué),提高學(xué)生是運(yùn)算過程具有明晰性、合理性、簡捷性能力。
(4)通過一題多解、一題多變培養(yǎng)正確、迅速與合理、靈活的運(yùn)算能力,促使知識間的滲透和遷移。
(5)利用數(shù)形結(jié)合,另辟蹊徑,提高學(xué)生運(yùn)算能力。
三、學(xué)生在數(shù)學(xué)學(xué)習(xí)上存在的主要問題
我校高一學(xué)生在數(shù)學(xué)學(xué)習(xí)上存在不少問題,這些問題主要表現(xiàn)在以下方面:
1、進(jìn)一步學(xué)習(xí)條件不具備.高中數(shù)學(xué)與初中數(shù)學(xué)相比,知識的深度、廣度,能力要求都是一次飛躍.這就要求必須掌握基礎(chǔ)知識與技能為進(jìn)一步學(xué)習(xí)作好準(zhǔn)備。高中數(shù)學(xué)很多地方難度大、方法新、分析能力要求高.如二次函數(shù)在閉區(qū)間上的最值問題,函數(shù)值域的求法,實(shí)根分布與參變量方程,三角公式的變形與靈活運(yùn)用,空間概念的形成,排列組合應(yīng)用題及實(shí)際應(yīng)用問題等.客觀上這些觀點(diǎn)就是分化點(diǎn),有的內(nèi)容還是高初中教材都不講的脫節(jié)內(nèi)容,如不采取補(bǔ)救措施,查缺補(bǔ)漏,分化是不可避免的。
2、被動(dòng)學(xué)習(xí).許多同學(xué)進(jìn)入高中后,還像初中那樣,有很強(qiáng)的依賴心理,跟隨老師慣性運(yùn)轉(zhuǎn),沒有掌握學(xué)習(xí)主動(dòng)權(quán).表現(xiàn)在不定計(jì)劃,坐等上課,課前沒有預(yù)習(xí),對老師要上課的內(nèi)容不了解,上課忙于記筆記,沒聽到“門道”,沒有真正理解所學(xué)內(nèi)容。不知道或不明確學(xué)習(xí)數(shù)學(xué)應(yīng)具有哪些學(xué)習(xí)方法和學(xué)習(xí)策略;老師上課一般都要講清知識的來龍去脈,剖析概念的內(nèi)涵,分析重點(diǎn)難點(diǎn),突出思想方法.而一部分同學(xué)上課沒能專心聽課,對要點(diǎn)沒聽到或聽不全,筆記記了一大本,問題也有一大堆,課后又不能及時(shí)鞏固、總結(jié)、尋找知識間的聯(lián)系,只是趕做作業(yè),亂套題型,對概念、法則、公式、定理一知半解,機(jī)械模仿,死記硬背.也有的晚上加班加點(diǎn),白天無精打采,或是上課根本不聽,自己另搞一套,結(jié)果是事倍功半,收效甚微。
教材分析:
解不等式是不等式學(xué)習(xí)的主要內(nèi)容,是中學(xué)數(shù)學(xué)的一項(xiàng)重要技能。主要類型有:一元一次不等式或不等式組的解法,一元二次不等式或不等式組的解法。其中,一次不等式的解法是基礎(chǔ),初中已經(jīng)學(xué)習(xí),二次不等式是重點(diǎn),也是學(xué)習(xí)的難點(diǎn)。作為數(shù)學(xué)重要的工具及方法,經(jīng)常運(yùn)用于其它數(shù)學(xué)知識之中。一元二次不等式的解法主要有二種,課本上介紹的是“數(shù)形結(jié)合”方法,這種方法將二次函數(shù),二次方程結(jié)合為一體,并且借助“圖形”直觀地得出答案,充分展現(xiàn)了數(shù)學(xué)知識之間的內(nèi)在聯(lián)系,另外也展現(xiàn)了“數(shù)形結(jié)合”思想方法的巨大魅力。然而,個(gè)人認(rèn)為,還有一種更加自然的方法,將二次不等式轉(zhuǎn)化為一次不等式組的方法,這種方法思路自然,同時(shí)也體現(xiàn)了“轉(zhuǎn)化”思想,難度也不大,應(yīng)該更加符合學(xué)生的實(shí)際思維及思路。
學(xué)情分析:
初中已經(jīng)學(xué)習(xí)了一元一次不等式(或組)的解法,積累了一定的解題經(jīng)驗(yàn)。同時(shí),對于二次方程,二次函數(shù)等相關(guān)知識學(xué)生均較為熟悉。然而,根據(jù)自己的調(diào)查,一少部分學(xué)生對于一元一次不等式及不等式組的解法都表現(xiàn)出一定程度的陌生。進(jìn)而,可以先從復(fù)習(xí)簡單的一次不等式及不等式組入手加以展開教學(xué)。
學(xué)生心理方面,學(xué)習(xí)積極性較高,對數(shù)學(xué)的學(xué)習(xí)興趣、信心也比較理想,有較強(qiáng)的學(xué)習(xí)動(dòng)機(jī)——考上大學(xué),盡管是外在的誘因。
教學(xué)目標(biāo):
①知識與技能
熟練掌握一元一次不等式及不等式組的解法,初步學(xué)會(huì)兩種方法求出一元二次不等式的解集
②過程與方法
經(jīng)歷不等式求解的探索及發(fā)現(xiàn)過程,體驗(yàn)“數(shù)形結(jié)合及轉(zhuǎn)化”思想的魅力,掌握方法,學(xué)會(huì)學(xué)習(xí)
③情感、態(tài)度及價(jià)值觀
在上述過程中,體驗(yàn)成功,激發(fā)了對數(shù)學(xué)學(xué)習(xí)的興趣及信心,發(fā)展了對數(shù)學(xué)學(xué)習(xí)的積極情感,增強(qiáng)了學(xué)習(xí)的內(nèi)在動(dòng)機(jī)
教學(xué)重點(diǎn):
一元二次不等式的解法
教學(xué)難點(diǎn):
解法的探索及發(fā)現(xiàn),關(guān)鍵在于“識圖能力”
反思:
今天的課堂,這個(gè)難點(diǎn)突破欠缺力量,主要緣于自己備課時(shí)對難點(diǎn)考慮不到位,進(jìn)而缺乏必要的設(shè)計(jì)。在課堂上,就難點(diǎn)特別與個(gè)別差生進(jìn)行了交流,并且給予了幫助及指導(dǎo)。在指導(dǎo)過程中,我找出了他們困難的二個(gè)環(huán)節(jié):
首先,對平面曲線上點(diǎn)的橫坐標(biāo)與縱座標(biāo)之間的對應(yīng)關(guān)系表現(xiàn)陌生,進(jìn)而對它們的取值變化情況感到費(fèi)解。
其次,是差生的思維能力尚處于“經(jīng)驗(yàn)思維”,辯證思維能力薄弱,進(jìn)而對運(yùn)動(dòng)中的點(diǎn)的坐標(biāo)取值范圍只能是“一籌莫展”。
在了解情況后,遵循“最近發(fā)展區(qū)”原理,以問題串的形式給差生提供必要的幫助后,差生也順利度過了難關(guān)。由此足以說明,從知識的角度而言,“沒有教不好的學(xué)生,只有不會(huì)教的教師:這句話還是相當(dāng)有道理的。當(dāng)然,這一切的前提就是對學(xué)生“學(xué)情”的掌握。美國著名心理學(xué)家、結(jié)構(gòu)主義學(xué)派的代表人布魯納也有類似觀點(diǎn):給我一打健康的兒童,我可以教會(huì)他任何任何學(xué)科任何年齡段的任何知識。
教學(xué)程序:
一、復(fù)習(xí)一元一次不等式及不等式組的解法
以題組形式設(shè)計(jì)習(xí)題
①2x+3>7
②不等式組
③ax>b
二、創(chuàng)設(shè)二次不等式的生活背景實(shí)例,引入課題
采用課本上的實(shí)例,有關(guān)網(wǎng)絡(luò)收費(fèi)問題
三、一元二次不等式的解法探索
(1)
在教師的啟發(fā)引導(dǎo)下,從特殊到一般,學(xué)生經(jīng)歷“轉(zhuǎn)化”方法的探索及發(fā)現(xiàn)過程。
由于這種方法課本沒有給出,進(jìn)而課堂上不作為重點(diǎn),重在引導(dǎo)學(xué)生自行歸納、體驗(yàn)及總結(jié)“轉(zhuǎn)化”思想,最后以課外思考題的形式設(shè)計(jì)相應(yīng)習(xí)題。
(2)
采取啟發(fā)式教學(xué),師生共同經(jīng)歷“數(shù)形結(jié)合”方法的探索及發(fā)現(xiàn)過程,引導(dǎo)學(xué)生歸納出主要的解題步驟。今天的課堂上,這些解題步驟全部由學(xué)生的語言組織并完成,并撰寫在黑板上,教師沒有作任何干涉。我一直認(rèn)為,只有學(xué)生自己親身體驗(yàn)的知識才是有意義的知識,盡管這些知識不完整,語言或許不規(guī)范,思維或許不嚴(yán)密。
之后,從特殊到一般,研究一般的二元一次不等式的解法。由于經(jīng)歷了前面的解題過程,這個(gè)環(huán)節(jié)全部放手讓學(xué)生完成,鼓勵(lì)他們通過或獨(dú)立或合作的方式解決學(xué)習(xí)任務(wù),完成課本上的表格。
反思:根據(jù)課堂反饋,二個(gè)班級大約有70%的同學(xué)能夠勝任這個(gè)任務(wù)。于是,在大多數(shù)學(xué)生完成的基礎(chǔ)上,我又進(jìn)行了一次講解,特別加強(qiáng)了對“識圖”環(huán)節(jié)的講解力度,力求突破難點(diǎn)。
四、練習(xí)環(huán)節(jié)
可以說,即使到了高三,仍然有不少同學(xué)對于一元二次不等式解法的困惑。因此,熟練掌握二次不等式的解法,既是重點(diǎn),也是難點(diǎn)。從學(xué)習(xí)類型看,這節(jié)課顯然屬于技能課,對于技能的學(xué)習(xí)及掌握,關(guān)鍵是強(qiáng)化練習(xí),“力求熟能生巧”,達(dá)到自動(dòng)化的水平。
課本上,配置了不少練習(xí)題。對于練習(xí),我采取多種方式,或叫學(xué)生上黑板板書,借助學(xué)生練習(xí)規(guī)范解題格式;或者口答,說解題思路及答案;或者下面獨(dú)立練習(xí)。
五、課堂小結(jié)
知識,思想、方法及感悟等
六、課后作業(yè)
①作業(yè)設(shè)計(jì):分成A、B兩層,難度不一,讓學(xué)生自主選擇,均來源于課本上的A組或B組
②課外思考題:
1比較兩種解題方法即“轉(zhuǎn)化及數(shù)形結(jié)合”方法的優(yōu)劣,以及它們之間的異同
2已知不等式mx^2-(m-2)x+m>0的解集為R,求m的取值范圍
變式一:戓將R改為空集,此時(shí)結(jié)論如何
變式二:仿上,自己改編條件,并解之。
反思:課外思考題的設(shè)計(jì),可以提升課堂容量,深化課堂知識,提高課堂思維含量,為優(yōu)生服務(wù),發(fā)展學(xué)生的思維能力,激發(fā)他們的學(xué)習(xí)興趣。同時(shí),加強(qiáng)變式教學(xué),可以充分拓展習(xí)題的潛在價(jià)值,期望實(shí)現(xiàn)“舉一反三”的目標(biāo)。