初中數(shù)學(xué)一直很困擾我們,老師有時候講得東西一遍就過了,自己也沒聽懂,或者就是后排的學(xué)生看不到黑板上筆記自暴自棄。今日小編就為大家整理了初中數(shù)學(xué)知識點(diǎn)總結(jié)的范文,供大家參考學(xué)習(xí),讓我們一起來看看吧。
初中數(shù)學(xué)知識點(diǎn)總結(jié):篇一
可能性:①有些事情我們能確定他一定會發(fā)生,這些事情稱為必然事件;有些事情我們能肯定他一定不會發(fā)生,這些事情稱為不可能事件;必然事件和不可能事件都是確定的。②有很多事情我們無法肯定他會不會發(fā)生,這些事情稱為不確定事件。③一般來說,不確定事件發(fā)生的可能性是有大小的。
概率:①人們通常用1(或100%)來表示必然事件發(fā)生的可能性,用0來表示不可能事件發(fā)生的可能性。②游戲?qū)﹄p方公平是指雙方獲勝的可能性相同。③必然事件發(fā)生的概率為1,記作P(必然事件)=1;不可能事件發(fā)生的概率為0,記作P(不可能事件)=0;如果A為不確定事件,那么0〈P(A)〈1。
對于概率類問題特別要注意以下幾點(diǎn)
01 注意概率、機(jī)會、頻率的共同點(diǎn)和不同點(diǎn)。
02 注意題目中隱含求概率的問題。
03 畫樹狀圖及其它方法求概率。
04 摸球模型題注意放回和不放回。
05 注意在求概率的問題中尋找替代物,常見的替代物有:球,撲克牌,骰子等。
統(tǒng)計與概率會在中考中以客觀題的形式進(jìn)行考查,選擇題、填空題較多,同時考查多個考點(diǎn)的綜合性題目一般以解答題的形式進(jìn)行考查。
解決統(tǒng)計與概率問題常用的數(shù)學(xué)思想是方程思想和分類討論思想;常用的數(shù)學(xué)方法有分類討論法,整體代入法等。
初中數(shù)學(xué)知識點(diǎn)總結(jié):篇二
【考點(diǎn)】有理數(shù)計算、分?jǐn)?shù)拆分、方程思想【難度】★★★★
解答題:有8個連續(xù)的正整數(shù),其和可以表示成7個連續(xù)的正整數(shù)的和,但不能表示為3個連續(xù)的正整數(shù)的和,求這8個連續(xù)的正整數(shù)中最大數(shù)的最小值。(4分)
【解析】
設(shè)這八個連續(xù)正整數(shù)為:n,n+1……n+7;和為8n+28
可以表示為七個連續(xù)正整數(shù)為:k,k+1……k+6;和為7k+21
所以8n+28=7k+21,k=(8n+7)/7=n+1+n/7,k是整數(shù)
所以n=7,14,21,28……
當(dāng)n=7時,八數(shù)和為84=27+28+29,不符合題意,舍
當(dāng)n=14時,八數(shù)和為140,符合題意
【答案】最大數(shù)最小值:21
初中數(shù)學(xué)知識點(diǎn)總結(jié):篇三
在數(shù)1,2,3,4……1998,前添符號“+”或“-”,并依次運(yùn)算,所得可能的最小非負(fù)數(shù)是多少?(6分)
【解析】
最小的非負(fù)數(shù)為“0”,但是1998個正數(shù)中有999個奇數(shù),999個偶數(shù),他們的和或者差結(jié)果必為奇數(shù),因此不可能實(shí)現(xiàn)“0”
可以實(shí)現(xiàn)的最小非負(fù)數(shù)為“1”,如果能實(shí)現(xiàn)結(jié)果“1”,則符合題意
相鄰兩數(shù)差為1,所以相鄰四個數(shù)可以和為零,即n-(n+1)-(n+2)+n+3=0
從3,4,5,6……1998共有1996個數(shù),可以四個連續(xù)數(shù)字一組,和為零
【答案】
-1+2+3-4-5+6+7……+1995-1996-1997+1998=1
【改編】
在數(shù)1,2,3,4……n,前添符號“+”或“-”,并依次運(yùn)算,所得可能的最小非負(fù)數(shù)是多少?
【解析】
由上面解析可知,四個數(shù)連續(xù)數(shù)一組可以實(shí)現(xiàn)為零
如果n=4k,結(jié)果為0;(四數(shù)一組,無剩余)
如果n=4k+1,結(jié)果為1;(四數(shù)一組,剩余首項(xiàng)1)
如果n=4k+2,結(jié)果為1;(四數(shù)一組,剩余首兩項(xiàng)-1+2=1)
如果n=4k+3,結(jié)果為0;(四數(shù)一組,剩余首三項(xiàng)1+2-3=0)
四、【考點(diǎn)】絕對值化簡【難度】★★★★☆
【101中學(xué)期中】
將1,2,3,…,100這100個自然數(shù),任意分成50組,每組兩個數(shù),現(xiàn)將每組中的兩個數(shù)記為a,b,代入中進(jìn)行計算,求出結(jié)果,可得到50個值,則這50個值的和的最小值為____
【解析】
絕對值化簡得:當(dāng)a≥b時,原式=b;當(dāng)a
所以50組可得50個最小的已知自然數(shù),即1,2,3,4……50
【答案】1275
【改編】
這50個值的和的最大值為____
【解析】
因?yàn)楸举|(zhì)為取小運(yùn)算,所以100必須和99一組,98必須和97一組,最后留下的50組結(jié)果為:1,3,5,7……99=2500
初中數(shù)學(xué)知識點(diǎn)總結(jié):篇四
合并同類項(xiàng)就是逆用乘法分配律
為什么合并同類項(xiàng)時,要把各項(xiàng)的系數(shù)相加而字母和字母的指數(shù)都不改變,這有什么理論依據(jù)嗎?
其實(shí),合并同類項(xiàng)法則是有其理論依據(jù)的。它所依據(jù)的就是大家早已熟知了的乘法分配律,a(b+c)=ab+ac。合并同類項(xiàng)實(shí)際上就是乘法分配律的逆向運(yùn)用。即將同類項(xiàng)中的每一項(xiàng)都看成兩個因數(shù)的積,由于各項(xiàng)中都含有相同的字母并且它們的指數(shù)也分別相同,故同類項(xiàng)中的每項(xiàng)都含有相同的因數(shù)。合并時將分配律逆向運(yùn)用,用相同的那個因數(shù)去乘以各項(xiàng)中另一個因數(shù)的代數(shù)和。
把多項(xiàng)式中同類項(xiàng)合成一項(xiàng),叫做合并同類項(xiàng)。
如果兩個單項(xiàng)式,它們所含的字母相同,并且各字母的指數(shù)也分別相同,那么就稱這兩個單項(xiàng)式為同類項(xiàng)。如2ab與-3ab,m2n與m2n都是同類項(xiàng)。特別地,所有的常數(shù)項(xiàng)也都是同類項(xiàng)。
把多項(xiàng)式中的同類項(xiàng)合并成一項(xiàng),叫做同類項(xiàng)的合并(或合并同類項(xiàng))。同類項(xiàng)的合并應(yīng)遵照法則進(jìn)行:把同類項(xiàng)的系數(shù)相加,所得結(jié)果作為系數(shù),字母和字母的指數(shù)不變。
條件:①字母相同;②相同字母的指數(shù)相同
合并依據(jù):乘法分配律
初中數(shù)學(xué)知識點(diǎn)總結(jié):篇五
一、目標(biāo)與要求
1.了解正數(shù)與負(fù)數(shù)是從實(shí)際需要中產(chǎn)生的。
2.能正確判斷一個數(shù)是正數(shù)還是負(fù)數(shù),明確0既不是正數(shù)也不是負(fù)數(shù)。
3.理解有理數(shù)除法的意義,熟練掌握有理數(shù)除法法則,會進(jìn)行有理數(shù)的除法運(yùn)算;
4.了解倒數(shù)概念,會求給定有理數(shù)的倒數(shù);
5.通過將除法運(yùn)算轉(zhuǎn)化為乘法運(yùn)算,培養(yǎng)學(xué)生的轉(zhuǎn)化的思想;通過有理數(shù)的除法
二、重點(diǎn)
正、負(fù)數(shù)的概念;
正確理解數(shù)軸的概念和用數(shù)軸上的點(diǎn)表示有理數(shù);
有理數(shù)的加法法則;
除法法則和除法運(yùn)算。
三、難點(diǎn)
負(fù)數(shù)的概念、正確區(qū)分兩種不同意義的量;
數(shù)軸的概念和用數(shù)軸上的點(diǎn)表示有理數(shù);
異號兩數(shù)相加的法則;
根據(jù)除法是乘法的逆運(yùn)算,歸納出除法法則及商的符號的確定。
四、知識框架
五、知識點(diǎn)、概念總結(jié)
1.正數(shù):比0大的數(shù)叫正數(shù)。
2.負(fù)數(shù):比0小的數(shù)叫負(fù)數(shù)。
3.有理數(shù):
(1)凡能寫成q/p(p,q為整數(shù)且p不等于0)形式的數(shù),都是有理數(shù)。正整數(shù)、0、負(fù)整數(shù)統(tǒng)稱整數(shù);正分?jǐn)?shù)、負(fù)分?jǐn)?shù)統(tǒng)稱分?jǐn)?shù);整數(shù)和分?jǐn)?shù)統(tǒng)稱有理數(shù)。
注意:0即不是正數(shù),也不是負(fù)數(shù);-a不一定是負(fù)數(shù),+a也不一定是正數(shù);p不是有理數(shù);
(2)有理數(shù)的分類:
4.數(shù)軸:數(shù)軸是規(guī)定了原點(diǎn)、正方向、單位長度的一條直線。
5.相反數(shù):
(1)只有符號不同的兩個數(shù),我們說其中一個是另一個的相反數(shù);0的相反數(shù)還是0;
(2)相反數(shù)的和為0等價于a+b=0等價于a、b互為相反數(shù)。
6.絕對值:
(1)正數(shù)的絕對值是其本身,0的絕對值是0,負(fù)數(shù)的絕對值是它的相反數(shù);
注意:絕對值的意義是數(shù)軸上表示某數(shù)的點(diǎn)離開原點(diǎn)的距離;
(2)絕對值可表示為:
絕對值的問題經(jīng)常分類討論;
7.有理數(shù)比大?。?/p>
(1)正數(shù)的絕對值越大,這個數(shù)越大;
(2)正數(shù)永遠(yuǎn)比0大,負(fù)數(shù)永遠(yuǎn)比0小;
(3)正數(shù)大于一切負(fù)數(shù);
(4)兩個負(fù)數(shù)比大小,絕對值大的反而小;
(5)數(shù)軸上的兩個數(shù),右邊的數(shù)總比左邊的數(shù)大;
(6)大數(shù)-小數(shù)>0,小數(shù)-大數(shù)<0.
8.互為倒數(shù):乘積為1的兩個數(shù)互為倒數(shù);
注意:0沒有倒數(shù);若a≠0,那么a的倒數(shù)是1/a;若ab=1等價于a、b互為倒數(shù);若ab=-1等價于a、b互為負(fù)倒數(shù)。
9. 有理數(shù)加法法則:
(1)同號兩數(shù)相加,取相同的符號,并把絕對值相加;
(2)異號兩數(shù)相加,取絕對值較大的符號,并用較大的絕對值減去較小的絕對值;
(3)一個數(shù)與0相加,仍得這個數(shù)。
10.有理數(shù)加法的運(yùn)算律:
(1)加法的交換律:a+b=b+a ;
(2)加法的結(jié)合律:(a+b)+c=a+(b+c)。
11.有理數(shù)減法法則:減去一個數(shù),等于加上這個數(shù)的相反數(shù);即a-b=a+(-b)。
12.有理數(shù)乘法法則:
(1)兩數(shù)相乘,同號為正,異號為負(fù),并把絕對值相乘;
(2)任何數(shù)同零相乘都得零;
(3)幾個數(shù)相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負(fù)因式的個數(shù)決定。
13. 有理數(shù)乘法的運(yùn)算律:
(1)乘法的交換律:ab=ba;
(2)乘法的結(jié)合律:(ab)c=a(bc);
(3)乘法的分配律:a(b+c)=ab+ac 。
14.有理數(shù)除法法則:除以一個數(shù)等于乘以這個數(shù)的倒數(shù);注意:零不能做除數(shù),即a/0無意義。
15.有理數(shù)乘方的法則:
(1)正數(shù)的任何次冪都是正數(shù);
(2)負(fù)數(shù)的奇次冪是負(fù)數(shù);負(fù)數(shù)的偶次冪是正數(shù);注意:當(dāng)n為正奇數(shù)時:(-a)n=-an或(a-b)n=-(b-a)n ,當(dāng)n為正偶數(shù)時:(-a)n =an 或(a-b)n=(b-a)n 。
16.乘方的定義:
(1)求相同因式積的運(yùn)算,叫做乘方;
(2)乘方中,相同的因式叫做底數(shù),相同因式的個數(shù)叫做指數(shù),乘方的結(jié)果叫做冪;
17.科學(xué)記數(shù)法:
把一個大于10的數(shù)記成a×10n的形式,其中a是整數(shù)數(shù)位只有一位的數(shù),這種記數(shù)法叫科學(xué)記數(shù)法。
18.近似數(shù)的精確位:一個近似數(shù),四舍五入到那一位,就說這個近似數(shù)的精確到那一位。
19.有效數(shù)字:從左邊第一個不為零的數(shù)字起,到精確的位數(shù)止,所有數(shù)字,都叫這個近似數(shù)的有效數(shù)字。
20.混合運(yùn)算法則:先乘方,后乘除,最后加減。