初中九年級(jí)二次函數(shù)知識(shí)點(diǎn)總結(jié)

| 思敏2

很多時(shí)候死記硬背并不是的方法,需要找到正確的思路,靈活記憶。注重學(xué)生參與,聯(lián)系實(shí)際,豐富學(xué)生的感性認(rèn)識(shí),培養(yǎng)學(xué)生的良好的學(xué)習(xí)習(xí)慣,下面是小編為大家整理的關(guān)于初中九年級(jí)二次函數(shù)知識(shí)點(diǎn)總結(jié),希望對(duì)您有所幫助。歡迎大家閱讀參考學(xué)習(xí)!

初中九年級(jí)二次函數(shù)知識(shí)點(diǎn)總結(jié)

初中九年級(jí)二次函數(shù)知識(shí)點(diǎn)總結(jié)1

教學(xué)目標(biāo):

(1)能夠根據(jù)實(shí)際問題,熟練地列出二次函數(shù)關(guān)系式,并求出函數(shù)的自變量的取值范圍。

(2)注重學(xué)生參與,聯(lián)系實(shí)際,豐富學(xué)生的感性認(rèn)識(shí),培養(yǎng)學(xué)生的良好的學(xué)習(xí)習(xí)慣

教學(xué)重點(diǎn):能夠根據(jù)實(shí)際問題,熟練地列出二次函數(shù)關(guān)系式,并求出函數(shù)的自變量的取值范圍。

教學(xué)難點(diǎn):求出函數(shù)的自變量的取值范圍。

教學(xué)過程:

一、問題引新

1.設(shè)矩形花圃的垂直于墻(墻長18)的一邊AB的長為_m,先取_的一些值,算出矩形的另一邊BC的長,進(jìn)而得出矩形的面積ym2.試將計(jì)算結(jié)果填寫在下表的空格中,

AB長_(m) 1 2 3 4 5 6 7 8 9

BC長(m) 12

面積y(m2) 48

2._的值是否可以任意取?有限定范圍嗎?

3.我們發(fā)現(xiàn),當(dāng)AB的長(_)確定后,矩形的面積(y)也隨之確定, y是_的函數(shù),試寫出這個(gè)函數(shù)的關(guān)系式,教師可提出問題,(1)當(dāng)AB=_m時(shí),BC長等于多少m?(2)面積y等于多少? y=_(20-2_)

二、提出問題,解決問題

1、引導(dǎo)學(xué)生看書第二頁 問題一、二

2、觀察 概括

y=6_2 d= n /2 (n-3) y= 20 (1-_)2

以上 函數(shù)關(guān)系式有什么共同特點(diǎn)? (都是含有二次項(xiàng))

3、二次函數(shù)定義:形如y=a_2+b_+c (a、b、、c是常數(shù),a≠0)的函數(shù)叫做_的二次函數(shù),a叫做二次函數(shù)的系數(shù),b叫做一次項(xiàng)的系數(shù),c叫作常數(shù)項(xiàng).

4、課堂練習(xí)

(1) (口答)下列函數(shù)中,哪些是二次函數(shù)?

(1)y=5_+1 (2)y=4_2-1

(3)y=2_3-3_2 (4)y=5_4-3_+1

(2).P3練習(xí)第1,2題。

五、小結(jié) 敘述二次函數(shù)的定義.

第二課時(shí):26.1 二次函數(shù)(2)

教學(xué)目標(biāo):

1、使學(xué)生會(huì)用描點(diǎn)法畫出y=a_2的圖象,理解拋物線的有關(guān)概念。

2、使學(xué)生經(jīng)歷、探索二次函數(shù)y=a_2圖象性質(zhì)的過程,培養(yǎng)學(xué)生觀察、思考、歸納的良好思維習(xí)慣。

教學(xué)重點(diǎn):使學(xué)生理解拋物線的有關(guān)概念,會(huì)用描點(diǎn)法畫出二次函數(shù)y=a_2的圖象

教學(xué)難點(diǎn):用描點(diǎn)法畫出二次函數(shù)y=a_2的圖象以及探索二次函數(shù)性質(zhì)。

初中九年級(jí)二次函數(shù)知識(shí)點(diǎn)總結(jié)2

計(jì)算方法

1.樣本平均數(shù):

2.樣本方差:

3.樣本標(biāo)準(zhǔn)差:

相交線與平行線、三角形、四邊形的有關(guān)概念、判定、性質(zhì)。

 內(nèi)容提要

一、 直線、相交線、平行線

1.線段、射線、直線三者的區(qū)別與聯(lián)系

從“圖形”、“表示法”、“界限”、“端點(diǎn)個(gè)數(shù)”、“基本性質(zhì)”等方面加以分析。

2.線段的中點(diǎn)及表示

3.直線、線段的基本性質(zhì)(用“線段的基本性質(zhì)”論證“三角形兩邊之和大于第三邊”)

4.兩點(diǎn)間的距離(三個(gè)距離:點(diǎn)-點(diǎn);點(diǎn)-線;線-線)

5.角(平角、周角、直角、銳角、鈍角)

6.互為余角、互為補(bǔ)角及表示方法

7.角的平分線及其表示

8.垂線及基本性質(zhì)(利用它證明“直角三角形中斜邊大于直角邊”)

9.對(duì)頂角及性質(zhì)

10.平行線及判定與性質(zhì)(互逆)(二者的區(qū)別與聯(lián)系)

11.常用定理:①同平行于一條直線的兩條直線平行(傳遞性);②同垂直于一條直線的兩條直線平行。

12.定義、命題、命題的組成

13.公理、定理

14.逆命題

二、 三角形

分類:

⑴按邊分;

⑵按角分

1.定義(包括內(nèi)、外角)

2.三角形的邊角關(guān)系:⑴角與角:①內(nèi)角和及推論;②外角和;③n邊形內(nèi)角和;④n邊形外角和。⑵邊與邊:三角形兩邊之和大于第三邊,兩邊之差小于第三邊。⑶角與邊:在同一三角形中,

3.三角形的主要線段

討論:①定義②__線的交點(diǎn)—三角形的_心③性質(zhì)

① 高線②中線③角平分線④中垂線⑤中位線

⑴一般三角形⑵特殊三角形:直角三角形、等腰三角形、等邊三角形

4.特殊三角形(直角三角形、等腰三角形、等邊三角形、等腰直角三角形)的判定與性質(zhì)

5.全等三角形

⑴一般三角形全等的判定(SAS、ASA、AAS、SSS)

⑵特殊三角形全等的判定:①一般方法②專用方法

6.三角形的面積

⑴一般計(jì)算公式⑵性質(zhì):等底等高的三角形面積相等。

7.重要輔助線

⑴中點(diǎn)配中點(diǎn)構(gòu)成中位線;⑵加倍中線;⑶添加輔助平行線

8.證明方法

⑴直接證法:綜合法、分析法

⑵間接證法—反證法:①反設(shè)②歸謬③結(jié)論

⑶證線段相等、角相等常通過證三角形全等

⑷證線段倍分關(guān)系:加倍法、折半法

⑸證線段和差關(guān)系:延結(jié)法、截余法

⑹證面積關(guān)系:將面積表示出來

三、 四邊形

分類表:

1.一般性質(zhì)(角)

⑴內(nèi)角和:360°

⑵順次連結(jié)各邊中點(diǎn)得平行四邊形。

推論1:順次連結(jié)對(duì)角線相等的四邊形各邊中點(diǎn)得菱形。

推論2:順次連結(jié)對(duì)角線互相垂直的四邊形各邊中點(diǎn)得矩形。

⑶外角和:360°

2.特殊四邊形

⑴研究它們的一般方法:

⑵平行四邊形、矩形、菱形、正方形;梯形、等腰梯形的定義、性質(zhì)和判定

⑶判定步驟:四邊形→平行四邊形→矩形→正方形

菱形

⑷對(duì)角線的紐帶作用:

3.對(duì)稱圖形

⑴軸對(duì)稱(定義及性質(zhì));⑵中心對(duì)稱(定義及性質(zhì))

4.有關(guān)定理:①平行線等分線段定理及其推論1、2

②三角形、梯形的中位線定理

③平行線間的距離處處相等。(如,找下圖中面積相等的三角形)

5.重要輔助線:①常連結(jié)四邊形的對(duì)角線;②梯形中常“平移一腰”、“平移對(duì)角線”、“作高”、“連結(jié)頂點(diǎn)和對(duì)腰中點(diǎn)并延長與底邊相交”轉(zhuǎn)化為三角形。

6.作圖:任意等分線段。

初中九年級(jí)二次函數(shù)知識(shí)點(diǎn)總結(jié)3

一、 基本概念

1.方程、方程的解(根)、方程組的解、解方程(組)

2. 分類:

二、 解方程的依據(jù)—等式性質(zhì)

1.a=b←→a+c=b+c

2.a=b←→ac=bc (c≠0)

三、 解法

1.一元一次方程的解法:去分母→去括號(hào)→移項(xiàng)→合并同類項(xiàng)→

系數(shù)化成1→解。

2. 元一次方程組的解法:⑴基本思想:“消元”⑵方法:①代入法

②加減法

四、 一元二次方程

1.定義及一般形式:

2.解法:⑴直接開平方法(注意特征)

⑵配方法(注意步驟—推倒求根公式)

⑶公式法:

⑷因式分解法(特征:左邊=0)

3.根的判別式:

4.根與系數(shù)頂?shù)年P(guān)系:

逆定理:若 ,則以 為根的一元二次方程是: 。

5.常用等式:

五、 可化為一元二次方程的方程

1.分式方程

⑴定義

⑵基本思想:

⑶基本解法:①去分母法②換元法(如, )

⑷驗(yàn)根及方法

2.無理方程

⑴定義

⑵基本思想:

⑶基本解法:①乘方法(注意技巧!!)②換元法(例, )⑷驗(yàn)根及方法

3.簡單的二元二次方程組

由一個(gè)二元一次方程和一個(gè)二元二次方程組成的二元二次方程組都可用代入法解。

六、 列方程(組)解應(yīng)用題

一概述

列方程(組)解應(yīng)用題是中學(xué)數(shù)學(xué)聯(lián)系實(shí)際的一個(gè)重要方面。其具體步驟是:

⑴審題。理解題意。弄清問題中已知量是什么,未知量是什么,問題給出和涉及的相等關(guān)系是什么。

⑵設(shè)元(未知數(shù))。①直接未知數(shù)②間接未知數(shù)(往往二者兼用)。一般來說,未知數(shù)越多,方程越易列,但越難解。

⑶用含未知數(shù)的代數(shù)式表示相關(guān)的量。

⑷尋找相等關(guān)系(有的由題目給出,有的由該問題所涉及的等量關(guān)系給出),列方程。一般地,未知數(shù)個(gè)數(shù)與方程個(gè)數(shù)是相同的。

⑸解方程及檢驗(yàn)。

⑹答案。

綜上所述,列方程(組)解應(yīng)用題實(shí)質(zhì)是先把實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題(設(shè)元、列方程),在由數(shù)學(xué)問題的解決而導(dǎo)致實(shí)際問題的解決(列方程、寫出答案)。在這個(gè)過程中,列方程起著承前啟后的作用。因此,列方程是解應(yīng)用題的關(guān)鍵。

二常用的相等關(guān)系

1. 行程問題(勻速運(yùn)動(dòng))

基本關(guān)系:s=vt

⑴相遇問題(同時(shí)出發(fā)):

+ = ;

⑵追及問題(同時(shí)出發(fā)):

若甲出發(fā)t小時(shí)后,乙才出發(fā),而后在B處追上甲,則

⑶水中航行: ;

2. 配料問題:溶質(zhì)=溶液_濃度

溶液=溶質(zhì)+溶劑

3.增長率問題:

4.工程問題:基本關(guān)系:工作量=工作效率_工作時(shí)間(常把工作量看著單位“1”)。

5.幾何問題:常用勾股定理,幾何體的面積、體積公式,相似形及有關(guān)比例性質(zhì)等。

初中九年級(jí)二次函數(shù)知識(shí)點(diǎn)總結(jié)4

當(dāng)h>0時(shí),y=a(_-h)^2的圖象可由拋物線y=a_^2向右平行移動(dòng)h個(gè)單位得到,

當(dāng)h<0時(shí),則向左平行移動(dòng)|h|個(gè)單位得到.

當(dāng)h>0,k>0時(shí),將拋物線y=a_^2向右平行移動(dòng)h個(gè)單位,再向上移動(dòng)k個(gè)單位,就可以得到y(tǒng)=a(_-h)^2+k的圖象;

當(dāng)h>0,k<0時(shí),將拋物線y=a_^2向右平行移動(dòng)h個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y(tǒng)=a(_-h)^2+k的圖象;

當(dāng)h<0,k>0時(shí),將拋物線向左平行移動(dòng)|h|個(gè)單位,再向上移動(dòng)k個(gè)單位可得到y(tǒng)=a(_-h)^2+k的圖象;

當(dāng)h<0,k<0時(shí),將拋物線向左平行移動(dòng)|h|個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y(tǒng)=a(_-h)^2+k的圖象;

因此,研究拋物線y=a_^2+b_+c(a≠0)的圖象,通過配方,將一般式化為y=a(_-h)^2+k的形式,可確定其頂點(diǎn)坐標(biāo)、對(duì)稱軸,拋物線的大體位置就很清楚了.這給畫圖象提供了方便.

2.拋物線y=a_^2+b_+c(a≠0)的圖象:當(dāng)a>0時(shí),開口向上,當(dāng)a<0時(shí)開口向下,對(duì)稱軸是直線_=-b/2a,頂點(diǎn)坐標(biāo)是(-b/2a,[4ac-b^2]/4a).

3.拋物線y=a_^2+b_+c(a≠0),若a>0,當(dāng)_≤-b/2a時(shí),y隨_的增大而減小;當(dāng)_≥-b/2a時(shí),y隨_的增大而增大.若a<0,當(dāng)_≤-b/2a時(shí),y隨_的增大而增大;當(dāng)_≥-b/2a時(shí),y隨_的增大而減小.

4.拋物線y=a_^2+b_+c的圖象與坐標(biāo)軸的交點(diǎn):

(1)圖象與y軸一定相交,交點(diǎn)坐標(biāo)為(0,c);

(2)當(dāng)△=b^2-4ac>0,圖象與_軸交于兩點(diǎn)A(_?,0)和B(_?,0),其中的_1,_2是一元二次方程a_^2+b_+c=0

(a≠0)的兩根.這兩點(diǎn)間的距離AB=|_?-_?|

當(dāng)△=0.圖象與_軸只有一個(gè)交點(diǎn);

當(dāng)△<0.圖象與_軸沒有交點(diǎn).當(dāng)a>0時(shí),圖象落在_軸的上方,_為任何實(shí)數(shù)時(shí),都有y>0;當(dāng)a<0時(shí),圖象落在_軸的下方,_為任何實(shí)數(shù)時(shí),都有y<0.

5.拋物線y=a_^2+b_+c的最值:如果a>0(a<0),則當(dāng)_=-b/2a時(shí),y最小(大)值=(4ac-b^2)/4a.

頂點(diǎn)的橫坐標(biāo),是取得最值時(shí)的自變量值,頂點(diǎn)的縱坐標(biāo),是最值的取值.

6.用待定系數(shù)法求二次函數(shù)的解析式

(1)當(dāng)題給條件為已知圖象經(jīng)過三個(gè)已知點(diǎn)或已知_、y的三對(duì)對(duì)應(yīng)值時(shí),可設(shè)解析式為一般形式:

y=a_^2+b_+c(a≠0).

(2)當(dāng)題給條件為已知圖象的頂點(diǎn)坐標(biāo)或?qū)ΨQ軸時(shí),可設(shè)解析式為頂點(diǎn)式:y=a(_-h)^2+k(a≠0).

(3)當(dāng)題給條件為已知圖象與_軸的兩個(gè)交點(diǎn)坐標(biāo)時(shí),可設(shè)解析式為兩根式:y=a(_-_?)(_-_?)(a≠0).

7.二次函數(shù)知識(shí)很容易與其它知識(shí)綜合應(yīng)用,而形成較為復(fù)雜的綜合題目。因此,以二次函數(shù)知識(shí)為主的綜合性題目是中考的熱點(diǎn)考題,往往以大題形式出現(xiàn).

初中九年級(jí)二次函數(shù)知識(shí)點(diǎn)總結(jié)5

I.定義與定義表達(dá)式

一般地,自變量_和因變量y之間存在如下關(guān)系:y=a_^2+b_+c

(a,b,c為常數(shù),a≠0,且a決定函數(shù)的開口方向,a>0時(shí),開口方向向上,a<0時(shí),開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大.)則稱y為_的二次函數(shù)。

二次函數(shù)表達(dá)式的右邊通常為二次三項(xiàng)式。

II.二次函數(shù)的三種表達(dá)式

一般式:y=a_^2+b_+c(a,b,c為常數(shù),a≠0)

頂點(diǎn)式:y=a(_-h)^2+k[拋物線的頂點(diǎn)P(h,k)]

交點(diǎn)式:y=a(_-_?)(_-_?)[僅限于與_軸有交點(diǎn)A(_?,0)和B(_?,0)的拋物線]

注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系:

h=-b/2a k=(4ac-b^2)/4a _?,_?=(-b±√b^2-4ac)/2a

III.二次函數(shù)的圖像

在平面直角坐標(biāo)系中作出二次函數(shù)y=_^2的圖像,可以看出,二次函數(shù)的圖像是一條拋物線。

IV.拋物線的性質(zhì)

1.拋物線是軸對(duì)稱圖形。對(duì)稱軸為直線_=-b/2a。

對(duì)稱軸與拋物線的交點(diǎn)為拋物線的頂點(diǎn)P。特別地,當(dāng)b=0時(shí),拋物線的對(duì)稱軸是y軸(即直線_=0)

2.拋物線有一個(gè)頂點(diǎn)P,坐標(biāo)為:P(-b/2a,(4ac-b^2)/4a)當(dāng)-b/2a=0時(shí),P在y軸上;當(dāng)Δ=b^2-4ac=0時(shí),P在_軸上。

3.二次項(xiàng)系數(shù)a決定拋物線的開口方向和大小。

當(dāng)a>0時(shí),拋物線向上開口;當(dāng)a<0時(shí),拋物線向下開口。|a|越大,則拋物線的開口越小。

4.一次項(xiàng)系數(shù)b和二次項(xiàng)系數(shù)a共同決定對(duì)稱軸的位置。

當(dāng)a與b同號(hào)時(shí)(即ab>0),對(duì)稱軸在y軸左;

當(dāng)a與b異號(hào)時(shí)(即ab<0),對(duì)稱軸在y軸右。

5.常數(shù)項(xiàng)c決定拋物線與y軸交點(diǎn)。

拋物線與y軸交于(0,c)

6.拋物線與_軸交點(diǎn)個(gè)數(shù)

Δ=b^2-4ac>0時(shí),拋物線與_軸有2個(gè)交點(diǎn)。

Δ=b^2-4ac=0時(shí),拋物線與_軸有1個(gè)交點(diǎn)。

Δ=b^2-4ac<0時(shí),拋物線與_軸沒有交點(diǎn)。

_的取值是虛數(shù)(_=-b±√b^2-4ac的值的相反數(shù),乘上虛數(shù)i,整個(gè)式子除以2a)

V.二次函數(shù)與一元二次方程

特別地,二次函數(shù)(以下稱函數(shù))y=a_^2+b_+c,

當(dāng)y=0時(shí),二次函數(shù)為關(guān)于_的一元二次方程(以下稱方程),即a_^2+b_+c=0

此時(shí),函數(shù)圖像與_軸有無交點(diǎn)即方程有無實(shí)數(shù)根。函數(shù)與_軸交點(diǎn)的橫坐標(biāo)即為方程的根。


教學(xué)總結(jié)相關(guān)文章:

教學(xué)工作總結(jié)

最新教師教學(xué)工作總結(jié)

學(xué)校教師教育教學(xué)工作總結(jié)3篇

年度教學(xué)工作總結(jié)報(bào)告

教師個(gè)人教學(xué)工作總結(jié)2021五篇

大學(xué)個(gè)人教學(xué)工作總結(jié)

2020年學(xué)校教學(xué)工作總結(jié)

2020教育教學(xué)工作總結(jié)精選

2020教育教學(xué)工作總結(jié)

教職工個(gè)人教育教學(xué)工作總結(jié)

109204